Skip to main content
Log in

Controlling complex Langevin dynamics at finite density

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

At nonzero chemical potential the numerical sign problem in lattice field theory limits the use of standard algorithms based on importance sampling. Complex Langevin dynamics provides a possible solution, but it has to be applied with care. In this review, we first summarise our current understanding of the approach, combining analytical and numerical insight. In the second part we study SL(C, ℂ) gauge cooling, which was introduced recently as a tool to control complex Langevin dynamics in nonabelian gauge theories. We present new results in Polyakov chain models and in QCD with heavy quarks and compare various adaptive cooling implementations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. de Forcrand, PoS LAT2009, 010 (2009) arXiv:1005.0539 [hep-lat].

    Google Scholar 

  2. G. Aarts, PoS LATTICE2012, 017 (2012) arXiv:1302.3028 [hep-lat].

    Google Scholar 

  3. G. Parisi, Phys. Lett. B 131, 393 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  4. J.R. Klauder, Stochastic quantization, in Recent Developments in High-Energy Physics, edited by H. Mitter, C.B. Lang (Springer-Verlag, Wien, 1983) p. 351.

  5. J.R. Klauder, J. Phys. A: Math. Gen. 16, L317 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  6. J.R. Klauder, Phys. Rev. A 29, 2036 (1984).

    Article  ADS  Google Scholar 

  7. G. Aarts, I.-O. Stamatescu, JHEP 09, 018 (2008) arXiv:0807.1597 [hep-lat].

    Article  MathSciNet  ADS  Google Scholar 

  8. G. Aarts, Phys. Rev. Lett. 102, 131601 (2009) arXiv:0810.2089 [hep-lat].

    Article  ADS  Google Scholar 

  9. G. Aarts, K. Splittorff, JHEP 08, 017 (2010) arXiv:1006.0332 [hep-lat].

    Article  ADS  Google Scholar 

  10. G. Aarts, F.A. James, JHEP 01, 118 (2012) arXiv:1112.4655 [hep-lat].

    Article  ADS  Google Scholar 

  11. J. Ambjorn, S.K. Yang, Phys. Lett. B 165, 140 (1985).

    Article  ADS  Google Scholar 

  12. J. Ambjorn, M. Flensburg, C. Peterson, Nucl. Phys. B 275, 375 (1986).

    Article  ADS  Google Scholar 

  13. J. Berges, S. Borsanyi, D. Sexty, I.O. Stamatescu, Phys. Rev. D 75, 045007 (2007) hep-lat/0609058.

    Article  ADS  Google Scholar 

  14. J. Berges, D. Sexty, Nucl. Phys. B 799, 306 (2008) arXiv:0708.0779 [hep-lat].

    Article  ADS  MATH  Google Scholar 

  15. G. Aarts, E. Seiler, I.-O. Stamatescu, Phys. Rev. D 81, 054508 (2010) arXiv:0912.3360 [hep-lat].

    Article  ADS  Google Scholar 

  16. G. Aarts, F.A. James, JHEP 08, 020 (2010) arXiv:1005.3468 [hep-lat].

    Article  MathSciNet  ADS  Google Scholar 

  17. G. Aarts, F.A. James, E. Seiler, I.-O. Stamatescu, Eur. Phys. J. C 71, 1756 (2011) arXiv:1101.3270 [hep-lat].

    Article  ADS  Google Scholar 

  18. J.M. Pawlowski, C. Zielinski, Phys. Rev. D 87, 094503 (2013) arXiv:1302.1622 [hep-lat].

    Article  ADS  Google Scholar 

  19. J.M. Pawlowski, C. Zielinski, Phys. Rev. D 87, 094509 (2013) arXiv:1302.2249 [hep-lat].

    Article  ADS  Google Scholar 

  20. E. Seiler, D. Sexty, I.-O. Stamatescu, Phys. Lett. B 723, 213 (2013) arXiv:1211.3709 [hep-lat].

    Article  ADS  Google Scholar 

  21. P.H. Damgaard, H. Huffel, Phys. Rep. 152, 227 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  22. M. Reed, B. Simon, Methods of Modern Mathematical Physics IV: Analysis of Operators (Academic Press, New York, 1978).

  23. G. Aarts, JHEP 05, 052 (2009) arXiv:0902.4686 [hep-lat].

    Article  ADS  Google Scholar 

  24. A. Duncan, M. Niedermaier, arXiv:1205.0307 [quant-ph].

  25. G.G. Batrouni, G.R. Katz, A.S. Kronfeld, G.P. Lepage, B. Svetitsky, K.G. Wilson, Phys. Rev. D 32, 2736 (1985).

    Article  ADS  Google Scholar 

  26. G. Aarts, F.A. James, E. Seiler, I.-O. Stamatescu, Phys. Lett. B 687, 154 (2010) arXiv:0912.0617 [hep-lat].

    Article  ADS  Google Scholar 

  27. Chien-Cheng Chang, Math. Comput. 49, 523 (1987).

    Article  MATH  Google Scholar 

  28. W.P. Petersen, hep-lat/9602008.

  29. G. Aarts, F.A. James, J.M. Pawlowski, E. Seiler, D. Sexty, I.-O. Stamatescu, JHEP 03, 073 (2013) arXiv:1212.5231 [hep-lat].

    Article  MathSciNet  ADS  Google Scholar 

  30. D. Banerjee, S. Chandrasekharan, Phys. Rev. D 81, 125007 (2010) arXiv:1001.3648 [hep-lat].

    Article  ADS  Google Scholar 

  31. C. Gattringer, Nucl. Phys. B 850, 242 (2011) arXiv:1104.2503 [hep-lat].

    Article  ADS  MATH  Google Scholar 

  32. Y.D. Mercado, C. Gattringer, Nucl. Phys. B 862, 737 (2012) arXiv:1204.6074 [hep-lat].

    Article  ADS  MATH  Google Scholar 

  33. F. Karsch, H.W. Wyld, Phys. Rev. Lett. 55, 2242 (1985).

    Article  ADS  Google Scholar 

  34. N. Bilic, H. Gausterer, S. Sanielevici, Phys. Rev. D 37, 3684 (1988).

    Article  ADS  Google Scholar 

  35. J. Greensite, K. Splittorff, Phys. Rev. D 86, 074501 (2012) arXiv:1206.1159 [hep-lat].

    Article  ADS  Google Scholar 

  36. M. Fromm, J. Langelage, S. Lottini, O. Philipsen, JHEP 01, 042 (2012) arXiv:1111.4953 [hep-lat].

    Article  ADS  Google Scholar 

  37. M. Fromm, J. Langelage, S. Lottini, M. Neuman, O. Philipsen, Phys. Rev. Lett. 110, 122001 (2013) arXiv:1207.3005 [hep-lat].

    Article  ADS  Google Scholar 

  38. K. Langfeld, Phys. Rev. D 87, 114504 (2013) arXiv:1302.1908 [hep-lat].

    Article  ADS  Google Scholar 

  39. M. Campostrini, M. Hasenbusch, A. Pelissetto, P. Rossi, E. Vicari, Phys. Rev. B 63, 214503 (2001) cond-mat/0010360.

    Article  ADS  Google Scholar 

  40. I. Bender, T. Hashimoto, F. Karsch, V. Linke, A. Nakamura, M. Plewnia, I.O. Stamatescu, W. Wetzel, Nucl. Phys. Proc. Suppl. 26, 323 (1992).

    Article  ADS  Google Scholar 

  41. R. De Pietri, A. Feo, E. Seiler, I.-O. Stamatescu, Phys. Rev. D 76, 114501 (2007) arXiv:0705.3420 [hep-lat].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gert Aarts.

Additional information

Communicated by S. Hands

Contribution to the Topical Issue “Lattice Field Theory Methods in Hadron and Nuclear Physics” edited by Simon Hands and Hartmut Wittig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aarts, G., Bongiovanni, L., Seiler, E. et al. Controlling complex Langevin dynamics at finite density. Eur. Phys. J. A 49, 89 (2013). https://doi.org/10.1140/epja/i2013-13089-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2013-13089-4

Keywords

Navigation